On the Derivation of an Applied Metaphysic
نویسنده
چکیده
Every natural science, without exception, bases itself on some applied metaphysic. Today's sciences generally do so unwittingly, by which I mean they take their metaphysical foundations largely from some unscientific and quite personal pseudo-metaphysic the individual practicing scientist has developed in his own mind during the course of his lifetime with an addendum of some fractional metaphysic or pseudo-metaphysic that his scientific community has sanctioned as a paradigm for that field. Considering that this is the general situation, it is, strictly speaking, not correct to say any of the modern sciences are based on a scientific metaphysic. They are, rather, based on some disorganized and quixotic set of different ones that tend to work against the unified advancement of science in general and create antagonisms in interdisciplinary research.
منابع مشابه
Derivation of turbulent energy in a rotating system
Energy equation for turbulent flow in a rotating system was derived in terms of second order correlation tensors, where the correlation tensors were functions of space coordinates, distance between two points and time. To reveal the relationship of turbulent energy between two points, one point was taken as origin of the coordinate system. Due to rotation, the Coriolis force played an important...
متن کاملJordan derivation on trivial extension
Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.
متن کاملOn the superstability of a special derivation
The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.
متن کاملCharacterization of $(delta, varepsilon)$-double derivation on rings and algebras
This paper is an attempt to prove the following result:Let $n>1$ be an integer and let $mathcal{R}$ be a $n!$-torsion-free ring with the identity element. Suppose that $d, delta, varepsilon$ are additive mappings satisfyingbegin{equation}d(x^n) = sum^{n}_{j=1}x^{n-j}d(x)x^{j-1}+sum^{n-1}_{j=1}sum^{j}_{i=1}x^{n-1-j}Big(delta(x)x^{j-i}varepsilon(x)+varepsilon(x)x^{j-i}delta(x)Big)x^{i-1}quadend{e...
متن کاملGeneralized sigma-derivation on Banach algebras
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...
متن کامل